Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1026). Services for accessing these data are described at the back of the journal.

References

Cardwell. T. J., Edwards, A. J., Hartshorn, R. M., Holmes, R. J. \& McFadyen, W. D. (1997). Aust. J. Chem. 50, 1009-1015.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gable, R. W., Hoskins, B. F., Linden, A., McDonald, I. A. S. \& Steen, R. J. (1993). PROCESS_DATA. Program for the Processing of CAD-4 Diffractometer Data. University of Melbourne, Australia.
Hon, P. K. \& Pfluger, C. E. (1973). J. Coord. Chem. 3, 67-76.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5I38. Oak Ridge National Laboratory, Tennessee, USA.
Kruger, G. J. \& Reynhardt, E. C. (1974). Acta Cryst. B30, 822-824.
Sheldrick, G. M. (1976). SHELX76. Program for Crustal Structure Determination. University of Cambridge, England.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crustal Structures. University of Göttingen. Germany.
Wright, W. B. \& Meyers, E. A. (1980). Cryst. Struct. Commun. 9. 1173-1180.

Acta Cryst. (1998). C54, 1809-1811

Bis[bis(ethylenediamine- $\left.N, N^{\prime}\right)\left(\mu_{N, S^{-}}\right.$ thiocyanato)nickel(II)] Bis(hexafluorophosphate)

Michael James, ${ }^{a} \dagger$ Hiroyuki Kawaguchi, ${ }^{a}$ Kazuyuki Tatsumi ${ }^{a}$ and Trevor W. Hambley ${ }^{b}$
${ }^{a}$ Department of Chemistry, Faculty of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagova 464-01, Japan, and ${ }^{\text {b }}$ School of Chemistry, University of Sydney, NSW 2006, Australia. E-mail: mja@ansto.gov.au

(Received 16 March 1998; accepted 29 June 1998)

Abstract

The title compound, $\left[\mathrm{Ni}_{2}\left(\mathrm{NCS}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{4}\right]\left(\mathrm{PF}_{6}\right)_{2}\right.$ or $\left[\mathrm{Ni}(\mathrm{en})_{2}\left(\mu_{N . S}-\mathrm{NCS}\right)\right]_{2}\left[\mathrm{PF}_{6}\right]_{2}(\mathrm{en}=$ ethylenediamine $)$, has been synthesized via a molecular rearrangement reaction of trans $-\mathrm{Ni}(\mathrm{en})_{2}(\mathrm{NCS})_{2}$. It consists of dibridged $\left[\mathrm{Ni}(\mathrm{en})_{2}\left(\mu_{N . S}-\mathrm{NCS}\right)\right]_{2}$ cations with the NCS ligands forming a cis arrangement at the nickel centres. A threedimensional intermolecular hydrogen-bonding network is observed between the amine protons of the en ligands and the F atoms of the PF_{6}^{-}anions. \dagger New address: Neutron Scattering Group, ANSTO, Lucas Heights Research Laboratories, PMB I. Menai. NSW 2234. Australia.

Comment

The cationic component of the title compound, (1). consists of a pair of pseudo-octahedrally coordinated Ni atoms, linked by two bridging thiocyanato ligands to give a dimeric species. The symmetry of (1) is such as to place a crystallographic inversion centre at the centre of the dimer. Hexafluorophosphate groups form

(1)
the anionic component of this complex salt, with each PF_{6} group sitting on a crystallographic twofold axis. The arrangement of these ions in the asymmetric unit of (1) is shown in Fig. 1. As may be noted from this figure, the two thiocyanate bridges of (1) show only slight deviations from coplanarity. The dihedral angle formed by the planes containing atoms $\mathrm{Nil}, \mathrm{S} 1, \mathrm{Cl}$ and $\mathrm{Nil}, \mathrm{Sl}, \mathrm{Nl}$ is $3.5(1)^{\circ}$.

Fig. 1. An ORTEPII (Johnson, 1976) drawing of $\left[\mathrm{Ni}(\mathrm{en})_{2}\left(\mu_{N, S}-\right.\right.$ $\mathrm{NCS})]_{2}\left[\mathrm{PF}_{6}\right]_{2},(1)$. All atoms are represented by 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

The analogous iodide and perchlorate salts of (1) have previously been communicated (Svelasvili, 1966); however, this is the first report of a salt containing the PF_{6}^{-}counter-ion. Other related dithio-cyanato-bridged species have been observed, notably for $\left[\mathrm{Ni}(\text { tren })_{2}\left(\mu_{N . S}-\mathrm{NCS}\right)\right]_{2}\left[\mathrm{BPh}_{4}\right]_{2}$ (tren $=2,2^{\prime}, 2^{\prime \prime}$-triaminotriethylamine; Duggan \& Hendrickson, 1974),
$\left[\mathrm{Ni}(\text { benzylamine })_{3}(\mathrm{NCS})\left(\mu_{N, S}-\mathrm{NCS}\right)\right]_{2} \quad$ (Taniguchi \& Ouchi, 1986) and $\left[\mathrm{Ni}(\text { terpy })(\mathrm{NCS})\left(\mu_{N . S}-\mathrm{NCS}\right)\right]_{2}$ (terpy $=$ $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine; Rojo et al., 1991). Recently, a one-dimensional polymeric polymorph of (1), [catena$\left.\left(\mu_{N, S}-\mathrm{NCS}\right)\left\{\mathrm{Ni}(\mathrm{en})_{2}\right\}\right] \mathrm{PF}_{6}$, has been reported (Monfort et al., 1994). As in the case of (1), neighbouring nickel(II) ions are linked by thiocyanato bridging ligands in a cis geometry; however, in this case, alternate bridges are formed at approximately 90° to one another. Thus, a cationic helical chain is formed whose axis is parallel to the crystallographic c axis.

A significant trans effect is noted at the Ni centres, with average $\mathrm{Ni}-\mathrm{N}(\mathrm{en})$ bond distances of 2.083 (2) and $2.114(2) \AA$, cis and trans to the bridging thiocyanato groups, respectively. In contrast to the findings of Svelasvili (1966) for $\left[\mathrm{Ni}(\mathrm{en})_{2}\left(\mu_{N, S}-\mathrm{NCS}\right)\right]_{2} \mathrm{I}_{2}$, the trans effect observed in (1) does not extend to $\mathrm{C}-\mathrm{N}$ bond asymmetry in the ethylenediamine rings.

The significant puckering of the chelating en rings of (1) can be quantified by the dihedral angle (ω) between the planes defined, for example, by $\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$ and C2-C3-N3. The values of ω of 55.3 (1) and 53.1 (1) ${ }^{\circ}$ for the $\mathrm{N} 2-\mathrm{N} 3$ and $\mathrm{N} 4-\mathrm{N} 5$ en rings are typical of that found in other bis-chelating en complexes (Cramer et al., 1976).

A three-dimensional intermolecular hydrogen-bonding network is observed in (1) between the amine protons of the en ligands and the fluorine Lewis base (acceptor) sites on the PF_{6} groups (Table 3). Strong hydrogen bonds in (1) occur between amine protons that are both parallel and oblique to the pseudo- C_{3} axis of the Ni centre. Weaker intermolecular hydrogen bonds are also observed between amine protons and Lewis base sites at S atoms of the thiocyanate groups (Table 3). Relatively weak intramolecular hydrogen bonding also occurs in (1) between amine protons and nitrogen acceptor sites on adjacent chelate rings.
Intermolecular hydrogen bonding is a feature commonly observed in many compounds containing chelating en rings. In the case of bis-chelating molecules, strong intermolecular bonds have been observed not only between amine protons and counter-anions such as PF_{6}^{-}(James et al., 1998) and ClO_{4}^{-}(Meyer et al., 1982), but also between amine and aqua ligand protons to non-coordinated $\mathrm{BF}_{\ddagger}^{-}$anions (Tomlinson et al., 1976).

Experimental

The precursor trans- $\mathrm{Ni}(\mathrm{en})_{2}(\mathrm{NCS})_{2}$ was prepared from $\mathrm{Ni}(\mathrm{NCS})_{2} .0 .5 \mathrm{H}_{2} \mathrm{O}$ and ethylenediamine in the manner reported elsewhere (Brown \& Lingafelter, 1963). The stereochemistry of this compound was confirmed as trans by single-crystal X-ray diffraction. To an aqueous solution of trans$\mathrm{Ni}(\mathrm{en})_{2}(\mathrm{NCS})_{2}(1 \mathrm{mmol}, 30 \mathrm{ml})$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}(2 \mathrm{mmol})$ was added a methanolic solution of pyrazine ($1 \mathrm{mmol}, 10 \mathrm{ml}$) with rapid stirring. No immediate precipitate resulted. Upon reduc-
ing the volume to about 20 ml on a hotplate and allowing the solution to stand in air for 3 weeks. purple crystals of $\left[\mathrm{Ni}(\mathrm{en})_{2}\left(\mu_{s . s}-\mathrm{NCS}\right)\right]_{2}\left[\mathrm{PF}_{0}\right]_{2} .(1)$. were formed along with pale purple crystals of $\left[\mathrm{Ni}(\mathrm{en})_{2}(\mathrm{NCS})_{2}\right]_{2}\left[\mathrm{Ni}(\mathrm{en})_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$, (2). The structural characterization of (2) is discussed elsewhere (James et al., 1998).

Crystal data

$\left[\mathrm{Ni}_{2}\left(\mathrm{NCS}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{4}\right]\left(\mathrm{PF}_{6}\right)_{2}$
$M_{r}=763.87$
Monoclinic
$C 2 / c$
$a=15.865$ (3) \AA
$b=16.781$ (3) \AA
$c=12.691$ (3) \AA
$\beta=124.72(2)^{\circ}$
$V=2777(1) \AA^{3}$
$Z=4$
$D_{s}=1.827 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 fourcircle diffractometer
$\omega-2 \theta$ scans
Absorption correction:
analytical (de Meulenaer
\& Tompa, 1965)
$T_{\text {min }}=0.74, T_{\text {max }}=0.80$
3981 measured reflections
3483 independent reflections

Mo $K a$ radiation

$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=10.0-15.0^{\circ}$
$\mu=1.73 \mathrm{~mm}^{-1}$
$T=273.2 \mathrm{~K}$
Plate
$0.350 \times 0.155 \times 0.125 \mathrm{~mm}$
Purple

2615 reflections with

$$
I>2.5 \sigma(I)
$$

$R_{\text {r11 }}=0.036$
$\theta_{\text {mal }}=27.47^{\circ}$
$h=-20 \rightarrow 17$
$k=-1 \rightarrow 21$
$l=-1 \rightarrow 16$
3 standard reflections
every 50 reflections
intensity decay: 2.4%

Refinement

Refinement on F
$R=0.034$
$n \cdot R=0.047$
$S=1.49$
2615 reflections
238 parameters
All H atoms refined
$(\Delta / \sigma)_{\text {max }}=0.005$
$\Delta \rho_{\text {max }}=0.45 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.40 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crustallography: (Vol. C)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {ç }}=(1 / 3) \sum_{,} \sum_{j} U^{\prime \prime \prime} a^{\prime} l^{\prime} \mathbf{a}_{1} \cdot \mathbf{a}_{j}$.			
x	\cdots	こ	$U_{\text {c4 }}$
$0.8035+(2)$	$0.1758+(2)$	0.2325383	0.03089 (7)
0.86936 (5)	$0.1272+(4)$	0.09688 (6)	$0.0+23$ (2)
1	$0.13401(6)$	3/4	0.0400 (2)
1/2	0.00078 (8)	1/4	0.0541 (3)
1	0.2263 (2)	3/4	0.135 (2)
1	0.0412 (2)	3/4	0.110 (1)
1.1098 (2)	0.1333 (2)	0.8799 (2)	0.1019 (9)
1.0477 (2)	0.1339 (2)	0.6703 (2)	0.0922 (8)
0.5856 (2)	$0.0659(2)$	0.3016 (3)	0.121 (1)
$0.41+4(2)$	-0.0651 (2)	0.1956 (3)	0.128 (1)
0.4928 (2)	0.0004 H (3)	0.1224 (3)	0.135 (1)
0.7100 (2)	0.2592 (1)	0.0965 (2)	$0.0461(6)$
0.6910 (2)	0.0883	0.1453 (2)	0.0456 (6)
$0.891312)$	0.0823 (1)	0.3605 (2)	0.0405 (5)
0.9201121	$0.2608(1)$	0.3243 (2)	0.0426 (6)
(0.7662 (2)	$0.2222(2)$	0.3561121	0.0418 (6)
0.6779121	0.3063 (1)	$0.0168(2)$	$0.030515)$

$C 2$	$0.7386(3)$	$0.0100(2)$	$0.1980(4)$	$0.0564(8)$
$C 3$	$0.8178(2)$	$0.0189(2)$	$0.3396(3)$	$0.0550(8)$
C 4	$0.9242(3)$	$0.2936(2)$	$0.4 .446(3)$	$0.0550(8)$
C 5	$0.8170(3)$	$0.2995(2)$	$0.4017(3)$	$0.0539(8)$

Table 2. Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$

Nil-SI	2.6014 (8)	$\mathrm{Ni}-\mathrm{Cl}$	1.148 (3)
$\mathrm{Nil}-\mathrm{Nl}$	2.05 .5 (2)	N2-C2	1.47 .3 (4)
$\mathrm{Nil}-\mathrm{N} 2$	2.078 (2)	N3--C3	1.486 (4)
$\mathrm{Ni} 1-\mathrm{N} 3$	$2.11312)$	N4--C4	1.471 (4)
$\mathrm{Nil}-\mathrm{N} 4$	2.087 (2)	N5-C5	1.462 (4)
Nil - N 5	2.115 (2)	C2-C3	1.50 .3 (5)
S1-Cl'	1.6.30(2)	C4-C5	$1.506(5)$
Sl - $\mathrm{Nil}-\mathrm{Nl}$	91.56 (7)	N3-Nil--N5	92.5 (1)
Sl - Ni 1 - N 2	88.44 (8)	N4-Nil-NS	82.4 (1)
$\mathrm{SI}-\mathrm{NiI}-\mathrm{N} 3$	86.50) (7)	Nil-SI-Cl'	102.4 .3 (9)
Sl-Nil-N4	91.23 (7)	Nil-NI-Cl	162.5 (2)
$\mathrm{SI}-\mathrm{Nil}-\mathrm{N} 5$	173.47 (7)	$\mathrm{NiI}-\mathrm{N}_{2}-\mathrm{Cl}_{2}$	109.0 (2)
$\mathrm{N} 1-\mathrm{Nil}-\mathrm{N} 2$	92.5 (1)	$\mathrm{Nil}-\mathrm{N} 3-\mathrm{C} 3$	106.7 (2)
$\mathrm{N} \mid-\mathrm{Ni} 1-\mathrm{N} 3$	174.9 (1)	Nil-N4-C4	109.4 (2)
$\mathrm{Nl}-\mathrm{Nil}-\mathrm{N} 4$	89.4 (1)	Nil-NS-C5	107.2 (2)
$\mathrm{Ni}-\mathrm{NiI}-\mathrm{N} 5$	89.97 (9)	$\mathrm{Sl}{ }^{\prime}-\mathrm{Cl}-\mathrm{Nl}$	179.1 (2)
$\mathrm{N} 2-\mathrm{Nil}-\mathrm{N} 3$	82.8 (1)	N2-C2-C3	108.5 (3)
N2-Nil-N4	178.06 (9)	N3-C3--C2	108.7 (3)
$\mathrm{N} 2-\mathrm{Nil}-\mathrm{N} 5$	97.8 (1)	$\mathrm{N} 4-\mathrm{C4}-\mathrm{C} 5$	109.3 (3)
N3-Nil-N4	95.29 (9)	$\mathrm{N} 5-\mathrm{C} 5-\mathrm{C} 4$	109.4 (3)

Table 3. Hydrogen-bonding distances (\AA)

D-H. \cdot A	$\mathrm{H} \cdots \mathrm{A}$	$D-\mathbf{H} \cdots$ A	H \cdots A
$\mathrm{N} 2-\mathrm{H} 7 \ldots \mathrm{~F} 5$	2.45 (4)	$\mathrm{N} 3-\mathrm{H} 2 \ldots \mathrm{~F} 3^{\prime \prime \prime}$	2.81 (4)
$\mathrm{N} 2-\mathrm{H} 7 \ldots \mathrm{~F} 7$	2.65 (3)	N3-H2 \cdots F4	2.58 (3)
N2-H8*FF6	2.79 (4)	N4-H10) . F6'	2.52 (3)
N2--H8. .F7 ${ }^{1}$	2.62 (3)	N5-H15 . Fl^{\prime}	2.93 (3)
$\mathrm{N} 3-\mathrm{H} 1 \cdots \mathrm{~F} 2^{\prime \prime}$	2.70 (3)	NS-H16 \cdots F3 $3^{\text {1/1 }}$	2.32 (3)
H \cdots A	H \cdots A	H \cdots A	$\mathrm{H} \cdots \mathrm{A}$
HI...SI'	2.97 (3)	H9...si ${ }^{\prime \prime}$	2.83 (3)

Symmetry codes: (i) $1-x,-y,-z$; (ii) $x,-y, z+\frac{1}{2}$; (iii) $2-x, y, \frac{3}{2}-z$; (iv) $x-\frac{1}{2}, y-\frac{1}{2}, z$ (v) $x+\frac{1}{2}, \frac{1}{2}-y, z+\frac{1}{2}$; (vi) $2-x, y, \frac{1}{2}-z$.

The structure was solved by direct methods and developed by alternating cycles of difference Fourier syntheses and fullmatrix least-squares refinements. The positions of the atoms were determined unequivocally. The non- H atoms were refined anisotropically, while the H atoms were refined isotropically.

Data collection: CAD-4 Software (Enraf-Nonius, 1994). Cell refinement: CAD-4 Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1997). Program(s) used to solve structure: SIR92 (Altomare et al., 1993). Program(s) used to refine structure: TEXSAN. Software used to prepare material for publication: TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1401). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, M., Giacovazro. C. \& Guagliardi. A. (1993). J. Appl. Const. 26. 343-350.

Brown, B. W. \& Lingafelter. E. C. (1963). Acta Cryst. 16, 753-758.
Cramer. R. E.. van Doorne, W. \& Huneke. J. T. (1976). Inorg. Chem. 15, 529-535.
Duggan. D. M. \& Hendrickson. D. N. (1974). Inorg. Chem. 13. 29292940.

Enraf-Nonius (1994). CAD-4 Software. Version 5.I. Enraf-Nonius. Delft. The Netherlands.
James. M.. Kawaguchi. H. \& Tatsumi. K. (1998). Pol.hedron. 17. 1571-1577.

Johnson. C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory. Tennessee. USA.
Meulenaer. J. de \& Tompa. H. (1965). Acta Cryst. 19. 1(014-1018.
Meyer, A., Gleizes. A., Girerd, J. J.. Verdaguer. M. \& Kahn. O. (1982). Inorg. Chem. 21, 1729-1739.
Molecular Structure Corporation (1997). TEXSAN. Single Cnstal Structure Analisis Softuare. Version 1.7. MSC, 3200 Research Forest Drive. The Woodlands. TX 77381. USA.
Monfort. M.. Bastos. C.. Diaz. C.. Ribas, J. \& Solans. X. (1994). Inorg. Chim. Acta, 218, 185-188.
Rojo, T.. Cortes, R.. Lezama. L.. Arriortua, M. I., Urtiaga. K. \& Villencuve, G. (1991). J. Chem. Soc. Dalton Trans. pp. 1779-1783. Svelasvili. A. E. (1966). Acta Crist. 21, A-153.
Taniguchi, M. \& Ouchi, A. (1986). Bull. Chem. Soc: Jpn. 59, 32773278.

Tomlinson, A. A. G.. Bonamico, M., Dessy, G., Fares. V. \& Scaramuzza, L. (1976). J. Chem. Soc. Dalton Trans. pp. 1671-1674.

Acta Cryst. (1998). C54, 1811-1813

Bis(dimethylammonium) Hexachlorotellurate(IV)

Hiroyuki Ishida and Setsuo Kashino

Faculty of Science, Okayama University, Okayama 700-8530,
Japan. E-mail: ishidah@cc.okayama-u.ac.jp
(Received 20 March 1998; accepted 7 July 1998)

Abstract

The title compound, $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]_{2}\left[\mathrm{TeCl}_{6}\right]$, is isostructural with $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]_{2}\left[\mathrm{SnCl}_{6}\right]$ and the high-density form of $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]_{2}\left[\mathrm{PtCl}_{6}\right]$. It consists of a slightly distorted $\left[\mathrm{TeCl}_{6}\right]^{2-}$ octahedron and $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]^{+}$ions connected by a weak bifurcated hydrogen bond.

Comment

$\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]_{2}\left[\mathrm{TeCl}_{6}\right]$, (I), was reported to be isomorphous with $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]_{2}\left[\mathrm{SnCl}_{6}\right]$ (Ben Ghozlen \& Daoud, 1981; Knop et al., 1983) from X-ray powder diffraction data taken at room temperature (Ishida et al., 1984). The phase transitions and the molecular motions of the cation and anion were studied by ${ }^{1} \mathrm{H}$ NMR (Ishida et al., 1984), ${ }^{35} \mathrm{Cl} \mathrm{NQR}$ (Horiuchi et al., 1985; Ishikawa et al., 1989) and ${ }^{2} \mathrm{H}$ NMR (Ikeda et al., 1989) under the assumption that the Te salt has the same atomic arrangement as the Sn salt. The 180° flip motion of the cation about its pseudo- C_{2} axis and the 90 re-orientational jumps of the anion around the $\mathrm{Te}-\mathrm{Cl}$ bond axis were found to occur at room temperature in the Te salt with smaller activation energies than those determined in the Sn salt. This implies that the ions in the Te salt are bound more loosely than in the Sn salt.

